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Abstract—The purpose of this report is to summarize Group
12’s final project for ASEN 5519: Decision Making Under Un-
certainty. This project explores the use of Inverse Reinforcement
Learning, via Maximum Entropy Formulation, in a Markov
Decision Process. The concepts explored in this project were
demonstrated using a grid world environment.

I. INTRODUCTION

Reinforcement Learning is a subset of Machine Learning
that optimizes the sequence of decisions an agent makes in an
environment. Reinforcement Learning attempts to determine
the best set of actions, commonly referred to as a policy, that
maximizes a reward function for a given environment. The
reward function quantifies behavior and/or states in an envi-
ronment, indicating to the agent that their actions are positive,
negative, or neutral. This information is used to determine
the policy, or policies, that will maximize the reward function
and reinforces the behavior leads to the highest reward. In
most reinforcement learning techniques, an agent will explore
an environment and determine what actions correspond to the
highest reward. This results in an optimal policy, or policies,
that maximize the reward function.

Inverse Reinforcement Learning (IRL) is a subset of Re-
inforcement Learning that is useful in scenarios where the
reward function is difficult to describe, or is unknown. IRL
utilizes a “’professional” agent that demonstrates ideal behavior
in a given environment. The professional demonstrations are
used to derive a reward function that describes the objective
of the agent. Because this reward function is founded on
ideal behavior, it can simplify decisions that are otherwise
difficult for an untrained agent to make. In this way, the
demonstrations are essentially providing a solution to the
reinforcement learning problem and the reward function is
derived accordingly.

A common example of IRL is training an autonomous driv-
ing system. There are several possible behaviors of interest in
an autonomous car driving scenario, but one could determine
the most important behaviors would be speed control, avoiding
collisions with other cars or people, and obeying traffic laws. It
would be difficult to describe a comprehensive reward function
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for each of these behaviors that prepares an agent for diverse
environments or complex scenarios. It may also be difficult
to describe a reward function that allows for flexibility in the
solution. In this scenario it may be beneficial to accommodate
different driving styles. Using IRL, a “’professional” agent that
is able to perform to all of the desired objectives in several
environments will demonstrate ideal behavior that is used to
determine a reward function. The information gathered from
these demonstrations can be used to understand the objectives
of the professional agent and is then used to train agents for
the environment.

In this project, we implemented IRL on a Markov Decision
Process (MDP) applied to a grid world scenario. The grid
world was created with sparse rewards that were both positive
and negative. We first used Value Iteration to understand the
reward of each state in the grid world, and determined a policy
for the optimal action at each state. This policy was used to
create trajectories in the grid world that were considered the
“professional” agent. We then used Maximum Entropy IRL to
determine a reward function that was compared to the sparse
rewards that the grid world was created with.

II. RELATED WORK

The concept of the IRL was introduced in [1]]. They for-
mulated the problem as a linear programming procedure with
constraints corresponding to the optimal condition. Along with
[1], [2] considered the cases of (a) Finite-state MDP with
known optimal policy, (b) Infinite-state MDP with known
optimal policy and (c) Infinite-state MDP with unknown
optimal policy, but with demonstrations. For the infinite state
space problems, they approximated the reward function using
linear combination of all useful features [3] or using feature
expectations [2].

[2] introduced apprenticeship learning with sample tra-
jectories, which handled case (c), and tackles the problem
of autonomous driving system mentioned in section [l The
series of applications of this method was seen in the heli-
copter demonstrations [4]], [S], [6]]. Similarly, [[7] developed a
navigation controller that enabled a real-sized robotic car to
learn different parking styles. [8]] applied the formulation by
[1] to imitate a pedestrian’s behavior by a robot. IRL was also
used for building dialogue systems [9].



The basic formulations mentioned above had several as-
sumptions and hard constraints that made them unsuitable
for most practical applications. The most prominent couple
of them being (a) reward function assumed to be a linear
combination of features, and (b) assuming that the expert’s
demonstrations were always optimal. New refinements were
published to relax the basic assumptions and to look IRL from
a new perspective. [|10] introduced maximum margin planning
(MMP) which uses quadratic programming formulation and
introduces loss functions. Since, MMP still assumes the reward
function to have a linear form, it was later extended to learn
non-linear rewards by [[11]]. Bayesian IRL was introduced by
[12]. [13] generalized this method to a prefence elicitation
formulation in which the goal is to determine the experts
posterior distribution of preferences, and also extending it
to a multitask setting. Maximum entropy model was also
introduced in the similar vein, which is discussed in section
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III. INVERSE REINFORCEMENT LEARNING

Inverse Reinforcement Learning (IRL) attempts to deter-
mine the reward function of an environment through observed
behavior of an optimally performing agent. IRL can be utilized
in imitation learning where an agent replicates behavior
rather than learning from it. In imitation learning, also referred
to as behavioral cloning, the agent will replicate actions
that may be irrelevant. This process does not necessarily
derive a reward function as it can be accomplished with
supervised learning. In this project we pursued apprenticeship
learning, which is the application and learning process from
the demonstrated behavior through determining the reward
function. In apprenticeship learning, the agent can disregard
actions that are irrelevant to the determined objective when
trained on sufficient data by the professional.

One of the main challenges faced when using IRL is
reward function multiplicity. The observed behavior of an
agent is the basis to a policy, 7, for which there may be
many applicable reward functions that are optimized by .
Maximum Entropy Inverse Reinforcement Learning is one
method that attempts to resolve reward function multiplicity
and select a single stochastic policy. This approach heavily
favors the trajectory or policy distribution that does not
exhibit any additional preferences beyond matching feature
expectations. This results in using a reward weight parameter,
0, to create a parameterized distribution over possible paths
in the environment. Maximum Entropy formulation results
in trajectories that have a higher total reward being selected
exponentially more often than paths that yield a lower total
reward, due to the reward weight parameter. We will expand
more on our application of maximum entropy formulation, as
well as applicable equations, in the following sections.

Another challenge in IRL is quality of data from the
professional or demonstrator. This challenge is often faced
when the demonstrator is a human and the data is recorded
behavior in the form of videos or other sensors. Humans can
also create data irrelevant to the goal they are demonstrating,

such as scratching their face when demonstrating objective
behavior for cooking an omelet, or clicking on an ad when
demonstrating a behavior online. In this project, because the
demonstrated trajectories can be perfectly observed, we were
able to avoid this challenge. If however, there was an interest
in doing live demonstration as the goal trajectories in which
a human would navigate the grid world through an interface,
any mistakes from the human could present this challenge in
the IRL process.

IV. TECHNICAL APPROACH
A. PROBLEM FORMULATION

We make use of a 5X5 grid world environment to imple-
ment the proposed Inverse Reinforcement Learning approach.
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Fig. 1: 5x5 grid world with some sparse and negative rewards
to test the implemented IRL algorithm

The grid world is formulated as an MDP (S, A, T, R,~),
where:

o State Space: The states seS are the cells in our
grid world, given by the cell coordinates. The cell
coordinates for our implementation start with (0,0)
upto (gridsize — 1). Each cell also has a state index
associated with it.

o Action Space: We have limited our action space to four
discrete actions {RIGHT,UP,LEFT, DOWN}.
There actions correspond to moving one cell in
the given direction and is implemented by adding
{(1,0),(0,1),(—=1,0),(0,—1)} to the coordinate of the
state. That gives the next state that results from taking
the particular action.



o Transitions: 7T is the set transition probabilities
where T'(s,a,s’) gives the probability of transitioning
from state s to s’ by taking action a. We assume
that transitions in our grid world are deterministic.
Additionally, we check if the resulting state s’ is a
neighbour of the current state s, as the only transitions
allowed in our MDP are to the adjacent cells. We also
check for edges and corners of the grid world.

o Reward: The reward function R(s,a) describes how
much reward is obtained by taking an action a in the
state s. The rewards for different states in our 5X5 grid
world are given by Figure 1. For this implementation, the
reward is primarily dependent on the state, irrespective
of the action taken. Moreover, there are no negative
rewards for taking steps in the environment.

« Discount factor: + defines how much worth is a given
reward one step into the future as compared to getting
the same reward now. For our implementation, we chose
v < 0.9 for all the three grids.

B. Finding expert policy

In order to learn the rewards for a given environment, our

agent would need to observe the optimal behaviour for that
environment. The optimal behaviour can be described using a
policy. A policy gives the action the agent should take when
it is in state s in order to achieve the highest reward, or
complete a given objective. We call this policy that displays
the optimal behaviour the expert policy. In IRL, this expert
behaviour is generally learned from a demonstrator acting in
the environment. For example, for the driving scenario, this
behaviour can be learned from the human driver.
In a real-world scenario, we would try to learn the reward
function the demonstrator is trying to optimise. To simplify
things for our implementation, we rely on a different
technique to replicate the demonstrator. To calculate the
optimal policy, we use an algorithm called Value Iteration. It
gives the value estimate of each state, denoted by V' (s). We
can calculate the best action from the given values for every
state; the action that maximises the value of the given state.
Value Iteration computes the optimal values for each state by
iteratively improving upon the estimate of the state-values
until the value converges to a given tolerance.

V(s,a) = maz,(R(s,a)+ >, T(s'|s,a) x vV (s'))

The value iteration equation above gives the optimal value
for each state, taking into account the reward of the current
state and the expectation of the future reward. We additionally
keep track of the policy i.e. the best action at each state, to
help generate trajectories. This is generated from the action
that maximizes the value function at each state.

C. Generating Trajectories

The path taken by the agent in the environment is called a
trajectory and is denoted by 7. A trajectory is a set of (s, a, )
tuples, which gives the state, action and next state at each
point in the path. The value iteration algorithm stated above
gives an optimal policy and is used to generate a collection of
such trajectories, which are equivalent to the paths taken by
an expert demonstrator in the environment.

Average length of Trajectories = 11.7
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Fig. 2: Plot showing the average length of trajectories

D. Learning the reward structure

IRL takes into consideration an MDP which does not have a
reward specification. This is denoted by (5, A, T,~v)\R. The
reward is assumed to be some function of the state values.
We consider a vector of features ¢, and say that there is some
true reward R*(s) = w*.¢(s), where w* denotes the weighing
of the mentioned features. The reward, therefore, is a linear
combination of the features. Consider an autonomous driving
scenario, in which the agent trying to learn the human’s reward
function. The features” mentioned could be certain properties
of driving styles such as velocities and distances to other
vehicles, distance to the lanes, and a preferred speed. A policy
7 is defined as a mapping from the states to the probability
of taking the different actions in the given state. The value of
a policy is defined as the expectation with respect to a state
sequence starting from sg and picking actions according the
policy. This can be written as:

Ey,[V™(s0)] = E[Y_ R(s)ln]
t=0
We already know that the reward is a dot product of the

weights and the feature vector. We can then write the expected
value as:

B[V (s0)] = B> v'w.o(s1)]n]
t=0

Es, [V (s0)] = w.E[Y_~'¢(s:)In]

t=0



The expected value for the features discounted over time are
called feature expectations. These can we written as:

() = B[Y 7' ¢(s0)l]
t=0

And according to the definition above, we can now write the
expected value as follows:

B, [V™ (s0)] = w.pa(r)

The reward can now be learned from a set of demonstrations.
We assume that these demonstrations are generated by the
expert policy given by mp and the corresponding reward is
R* = W*” ¢. For this implementation, we can get the feature
expectations for the expert given the demonstrations.

E. Maximum Entropy Formulation

One of the biggest problems with learning the rewards
from this type of formulation is the multiplicity of reward
function. Given expert policy mpg, there can be multiple
reward functions for which the policy mg is optimal. We
tackle this problem by using Ziebart et al. [3] approach of
Maximum Entropy. We make use of a maximum entropy
distribution over the different paths. The particular trajectory
which gives the maximum reward is exponentially more
probable to be picked.

For this approach, we require the state visitation frequencies
which represent the probability of being in the particular
state s. We simply count all the possible paths to calculate
the state visitation frequencies. This approach is certainly not
feasible in large environments. But for our use, this works
fine as our number of states does not go over 100.

The maximum entropy algorithm is given by:

Maximum Entropy Inverse Reinforcement Learning

1- Initialize: Feature matrix (¢) and Weights (w)

2- Calculate feature expectations: Averaging the features
over states in given trajectories

3- i =0 to iterations

a. r = ¢lw

b Calculate state visitation frequencies (f;)

c. gradient = feature.xpectations — ¢ . f;
d. Update weights: w+ = a *x gradient

4- Return: ¢~ .w

V. RESULTS

The algorithm is experimented on two versions of a 3X3
grid and one version of a 5X5 grid world. The 3X3 grid
world was used to run initial tests for the algorithm. The
rewards are fairly simple in this set up, with just one positive
reward for the top left cell, which is the terminal state.The
grid world and results are shown in Figure 3.
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Fig. 3: Environment and results from applying the given IRL
algorithm to a 3x3 grid world. (a) 3x3 grid world with R =1
(b) 3x3 grid world with R = 10 (c) Comparison of the expert
and retrieved rewards for R = 1 (d) Ground truth reward
and IRL reward distribution for R = 1 (e) Comparison of
the expert and retrieved rewards for R = 10 (f) Ground truth
reward and IRL reward distribution for R = 10

We ran another set of experiments on a 5x5 grid world MDP
(Figure [T). We first fixed the number of iterations to 200 and
tested for different lengths of the trajectories. We experimented
with trajectory lengths of 20, 50 and 100. We notice that the
recovered reward is not sensitive to the number of trajectories
for less number of iterations such as 200. The plots for the
same are given in Figure 4.

We increase the number of epochs for our next set of trials.
We fix the number of trajectories to 50, this seemed to work
for most of the cases. We notice that the recovered reward
increases dramatically with increasing the number of epochs.
We start with the previous results for 50 trajectories and 200
epochs. Then we increase the number of epochs to 500 and
then 1000. We were able to retrieve the maximum reward in
1000 iterations. The plots are shown in Figure 5.

For the final set of experiments, we vary both the parameters
in order to reach a middle point for the optimal number of
trajectories and epochs. We find that generating 150 trajec-
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Fig. 4: Comparison plots and distribution of rewards for
different number of trajectories with fixed epochs = 200

tories and running the algorithm for 750 iterations gives a
middle ground for the parameters. The final plots and results
are shown in Figure 6.

VI. DEMO & INTERFACE

The third level of this project was to create a web-based
interface for the end-users to enter and generate expert trajec-
tories which can be fed to the IRL algorithms to learn the
reward function of the grid world. The user will have the
option of either (a) adding a trajectory, (b) viewing all the
recorded trajectories so far, or (c) downloading the recorded
trajectories in a CSV file.

Github (https://github.com/souravchk25/dmu-interface/tree/
master) contains the code and the demonstration video of
the interface. The code in written in Django framework with
HTML.

VII. CONCLUSION AND FUTURE WORK

We experimented with two variations of the grid world
(3X3 and 5.X5). We varied the different parameters - Epochs,
Number of trajectories, and plotted the obtained reward against
the true rewards. We also studied the reward distribution
across the grid. The experiments with the 3X3 grid world
showed a striking property of Inverse Reinforcement Learning
algorithms. We saw that IRL algorithms only learn a structure
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Fig. 5: Comparison plots and distribution of rewards for
different number of epochs with fixed number of trajectories
=50
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Fig. 6: Comparison plots and distribution of rewards for
number of epochs = 750 with number of trajectories = 150

of the reward distribution. In both the R = 1 and R = 10
case, the maximum reward averaged around 2 and 4.8
respectively. The algorithm could retrieve a general positive
reward for the terminal state but could not differentiate
between the actual values (1 and 10).

Building upon this general intuition, we experimented with
a slightly complicated grid world. The 5X5 grid world had
both positive and negative rewards distributed across the
grid. We saw that the algorithm was not very sensitive to
the number of trajectories with less number of epochs. This
result is important as it is indicative of the amount of data
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that might be required for extending this work to larger
environments. Our final plots show that 150 trajectories
with 750 iterations provided a decent trade-off to retrieve
the maximum reward of 10 from the environment.

Since the MDPs we used were smaller, we were able to run
the tests for the different variations in lesser time. One trial
with a 10X10 grid world was taking around 6 minutes so we
decided to downsize the grid. This approach will certainly
be inefficient for a larger MDP, specifically the calculation
of state visitation frequencies. We simply iterate over all
states in the trajectory to get the frequencies which makes
computation slower. Moreover, larger MDPs would also
require more trajectories to learn the reward.

Future iterations of this project could improve upon our
work by making use of a neural network approximation
for the rewards. Then the problem can be scaled up by a
large factor. This work will particularly be useful for real-
world scenarios where learning the reward is difficult. In
such cases, demonstrations given by an agent can be used to
generate trajectories and learn the reward the agent is trying
to optimise. This could be an interesting interaction and allow
a user to understand what actions they take either improve
or degrade the results derived through IRL based off of their
demonstration. We could also use deep networks for both the
expert policy and for learning the reward.
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