
Dynamic Obstacle Avoidance in Shared Human
Robot Workspace

Kaleb Bishop
Department of Computer Science
University of Colorado Boulder

Boulder, USA

Himanshu Gupta
Department of Computer Science
University of Colorado Boulder

Boulder, USA

Dylan Kriegman
Department of Computer Science
University of Colorado Boulder

Boulder, USA

Tuhina Tripathi
Department of Computer Science
University of Colorado Boulder

Boulder, USA

Yi-Shiuan Tung
Department of Computer Science
University of Colorado Boulder

Boulder, USA

Nikolaus Correll
Department of Computer Science
University of Colorado Boulder

Boulder, USA

Abstract—Collaboration between humans often leads to a
decrease in the total completion time of a task. This can be
extended to collaboration between a human and a robot on
a common task in a shared workspace. During human-robot
collaboration, a robot and a user must often complete a disjoint
set of tasks that use an overlapping set of objects, without using
the same object simultaneously. A key challenge is deciding what
task the robot should perform next in order to facilitate fluent and
efficient collaboration. In this paper, we briefly describe a prior
system for inferring a probability distribution over human goals,
and provide an approach to produce action for the manipulator
given that distribution in real time. We propose to achieve this
by formulating the problem as a Partially Observable Markov
Decision Processes (POMDPs) and solving this POMDP in an
online fashion using state of the art tree search techniques that
can be guided by a Probabilistic Roadmap. To overcome the
integration issues mentioned in the paer, we implemented a PRM-
based approach in the simulation environment and showed that
it’s effective in avoiding collisions while ensuring that the robot
accomplishes its task.

I. INTRODUCTION

Collaboration between a human and a robot (HRC) has
been widely used in many real-world scenarios ranging from
autonomous driving to industrial manufacturing. Automation
has revolutionized the manufacturing process over the last
few decades. There are so many manufacturing tasks that are
tedious or strenuous for humans to perform. Some of these
tasks, such as automobile assembly, are difficult to completely
automate because they require workers to collaborate in close
proximity and adapt to each other’s decisions and motions.
Robots cannot currently do such complex tasks. Rather than
completely automating such tasks, designing robotic systems
that can interact in the same environment as humans and assist
them in finishing a task seems more feasible. We believe safe
human robot collaboration can enable effective task execution
while reducing both strain of the human and total time for
task completion.
HRC requires the human and robot to execute tasks in a shared
workspace, in order to study the interactions between them.
Consider having a set of actions to be performed e.g., to open,

Fig. 1: The human and manipulator working together to finish
the task of clearing the table top.

to grasp, to move (tasks) and objects to perform the action on
e.g., a door, a glass, a cup (goals), the human can select tasks to
perform and goals on which to perform them. Meanwhile, the
robot can assist the human by performing a different task on
the same goal (e.g. grasp a bottle if the human wants to open it)
or on another goal (e.g., to open the fridge door if the human
wants to grab a bottle from it). The robot can also support the
human by picking an uncorrelated task on a secondary goal.
One of the goals of HRC is to guarantee human satisfaction
and comfort in the approach taken, therefore, the human has
priority over the robot in selecting the task. Thus, the robot
must adapt to the human’s task selections. Robot adaptation is
even more complex with certain constraints on the execution
order of the tasks (e.g. in order to grasp the bottle in the fridge,
the fridge door must be open) and when the robot is sharing
workspace, goals and/or tasks with more than one human.

In order for a robotic system to behave safely in a dynamic
environment with humans, it must try to estimate the unknown
human intentions and plan its motion accordingly. A popular
approach to maintain safety in the presence of moving hu-
mans is to interleave planning and execution within a motion
planning framework. Humans are treated as dynamic obstacles
and the human motion is predicted in the replanning window

by using a bounded velocity model. A trajectory is generated
using a cost function and that trajectory is implemented for a
small duration. This set of steps is repeated after every small
time interval.

We believe that there are three major drawbacks to these
methods. Firstly, they assume that their predicted human
motion is correct and don’t hedge against the uncertainty
in human motion prediction. Secondly, they don’t take into
consideration the long-term effects of immediate robot arm’s
actions, and is thus greedy. This often results in overly
aggressive or conservative actions, or attractive short-term
actions with undesirable longer-term consequences. Thirdly,
they don’t take into consideration the effects of robot arm’s
motion on human’s motion, which is definitely not the case in
real life. Modeling this can give rise to two kinds of behaviour.
In the first behaviour, the robot arm can try to affect the
human’s motion as less as possible. In the second behaviour,
the robot arm can attempt to modify the human motion and
guide it to a more optimal action (if there exists one) in a
collaborative task.

To overcome these drawbacks, we propose modeling the
problem as a Partially Observable Markov Decision Process
or POMDP [1]. A POMDP is a mathematical tool that can
efficiently hedge against uncertainties to provide reliable, ro-
bust and optimal decisions. However, the use of POMDPs for
robot planning under uncertainty is not widespread. POMDPs
are PSPACE-complete and so getting a complete solution
to POMDP problems in real time is computationally not
feasible. Offline methods for solving POMDPs have been used
before for intention-aware motion planning[2]. The earlier
work builds a discrete-state POMDP model and solves the
model offline for a policy. With recent advancements in online
POMDP planning techniques, POMDPs with continuous state
space and large discrete observation space can now be solved
real time with algorithms like DESPOT [3] and DESPOT-α
[4].

In this project, we have proposed to perform a human robot
collaborative task of clearing a table top and solve it by
formulating it as a POMDP. Our focus right now is mostly
on decision making under uncertainty and not on human
modeling. We believe our two major contributions in this
work, when finished, are to formulate the tabletop clearing
experiment as a POMDP and creating a system that can do
complex collaborative tasks.

II. RELATED WORK

A POMDP can be solved using both offline and online
sampling-based approaches. In offline planning, we compute
a policy for all possible future scenarios beforehand, and
the robot executes the computed policy based on the sensor
data received [5]. This approach is not suitable for very
large discrete state or continuous state POMDPs due to ex-
ponential number of possible scenarios. It gets even more
difficult when there are dynamic elements in the environment,
as it is extremely difficult to model dynamic elements by
predicting their expected behaviour in future. On the other

hand, online planning interleaves planning and plan execution
[6]. We maintain a belief distribution over all the possi-
ble states. The robot searches for the best action for the
current belief, executes that action, and updates its belief
distribution. The process is then repeated at the new belief
just generated. Online algorithms apply several techniques
for approximations and computational efficiency, including
heuristic search, branch-and-bound pruning, and Monte Carlo
sampling [7]. AEMS [9], POMCP [8] and DESPOT [3] were
the first few online POMDP algorithms. Both POMCP and
DESPOT can handle large number of states, but DESPOT has
a much stronger worst-case performance bound. POMCPOW
[10] and DESPOT-α [4] are amongst the best online POMDP
algorithms available today.

One main difficulty of autonomous behavior in human robot
collaboration tasks is to incorporate human intentions and
behaviors into decision making. There are two related, but
orthogonal issues here. One is human intention and behavior
modeling. There are various modeling based approaches, e.g.,
linear dynamic systems with Gaussian noise, hidden Markov
models (HMMs) [11], [12], Gaussian processes (GPs) [13].
Recent work has also been done using neural networks for
generating such human models [14]. Authors in [15] pro-
posed a model based on radial basis function neural networks
(RBFNN) to predict human intentions, which requires the
interaction force of human limb and robot arm. [16] uses a
set of probabilistic state machines, each regarding to a human
intention and corresponding to an action sequence.

However, our work focuses on the orthogonal issue, decision
making, which determines the best robot arm action given
some human behavior model. [17] used GMM to model human
motion. While planning, the robot uses the learnt model to
calculate the probability of a human occupying a voxel and
that acts as a cost function during motion planning using
STOMP [18]. Similar approach is used in [19] where an extra
layer of task planning is added that they solved using MDP
and generated an appropriate motion plan using ITOMP [20].
These approaches relied on short term prediction of human
motion. Recent work [20] tackled the same problem in a
factory setting and addressed the need for human predictions
involving significantly longer time horizons and then planning
for them accordingly. They used SIPP and re-planned online at
every time step. All these methods have drawbacks mentioned
in the introduction section.

POMDP planning reasons about uncertainties systematically
and computes a close-loop plan that handles all future con-
tingencies. In addition to human behavior uncertainty, the
POMDP approach can also incorporate manipulator control
and sensing uncertainties into decision making systematically.
[22] is an attempt to showcase that POMDP planning is
improving fast in computational efficiency and is becoming
more practical as a tool for robot planning under uncertainty.
In this work, we propose to check the effectiveness of online
POMDP methods in solving human robot collaboration tasks.

III. TECHNICAL APPROACH

This section describes the different technical components
of our approach including our POMDP model, the DESPOT
algorithm, and the use of Probabilistic Roadmaps that underpin
its performance.

A. POMDP Preliminaries

The Markov Decision Process (MDP) is a mathematical
framework for representing a broad class of sequential decision
making problems. A POMDP is a generalization of an MDP
in which the agent cannot directly observe the underlying
state. Instead, it must maintain a probability distribution over
the set of possible states, based on a set of observations and
observation probabilities, and the underlying MDP.

A POMDP is defined by a tuple (S,A,Z, T,O,R, γ), where
S is the state space, A is the action space, Z is the observation
space, T is the transition model, O is the observation model,
R is the reward model, and γ is the discount factor. When
the system is in state s ∈ S and takes an action a ∈ A, it
reaches state s′ ∈ S with probability T (s, a, s′) and gets an
observation z ∈ Z with probability O(s′, a, z). The reward
model R is specified by a function R(s, a, s′) which specifies
the immediate reward of transitioning from state s via action
a to state s′.

One method for handling the lack of direct state observabil-
ity is to maintain a belief over all the possible states. Let bt−1

be the belief at time t − 1. If the system takes an action at
and gets an observation zt at the next time step t, then using
Bayes’ rule, we get the new belief bt as:

bt(s
′) = ηO(s′, at, zt)

∑
s∈S

T (s, at, s
′)bt−1(s) (1)

where η is a normalization constant.
A policy for a POMDP is a function π that specifies the

action a = π(b) at any given belief over the state space b.
Online POMDP solvers generate a policy that maximizes the
expected total reward from the current belief b:

Vπ(b) = E
(∞∑
t=0

γtR(st, π(bt)
)
|b0 = b) (2)

B. Problem formulation as a POMDP

Our approach utilizes a POMDP to model both the ma-
nipulator and the dynamic obstacles (humans) around it,
generating control solutions that account for uncertainty in the
environment.

1) State Modeling: The state vector in our dynamic envi-
ronment navigation task POMDP consists of the manipulator
state and a vector of dynamic obstacle states. The manipulator
state consists of end effector position (xm, ym, zm), and all the
joint angles (θ1, θ2, θ3, θ4, θ5, θ6). The state vector contains
nhuman human states whose future motion intentions are not
directly observable, contributing uncertainty in the problem
formulation. The state of the ith human consists of its joint
position (αi

1, α
i
2, α

i
3, α

i
4, α

i
5, α

i
6, α

i
7), and its intended goal

location gi. The intention of the human is modeled as a goal
location, which is hidden from the manipulator and must be
inferred from its observed behavior.

2) Action Modeling: The action in the formulated POMDP
consists of choosing the goal location and moving towards
it for one time step, i.e., an object to go and grab on the
table. The naive way to do this is by moving towards the
chosen object in a straight line path. The change in robot joint
angles to perform this motion can be calculated using any
existing Inverse Kinematics library. However, this straight line
trajectory is infeasible in the presence of static obstacles in the
environment. Various motion planning algorithms [18], [20]
have been developed to obtain a path for the manipulator in the
presence of obstacles in the environment using optimization
techniques. We propose to use a Probabilistic Roadmap or
PRM for this purpose. The manipulator moves along PRM
nodes and at every node the possible actions are to move to
any of the adjacent neighbors. Further details on the PRM are
provided in Section III-D.

3) Observation Modeling: An observation in our POMDP
model is a vector consisting of the manipulator end effector
position and the discretized position of the hand for all the
nhuman humans. Given state-of-the-art sensing technology
and the effectiveness of filtering techniques, our model as-
sumes no observation noise for these variables (empirically,
small noise here does not materially affect agent policy). As
a human’s intention is the partially observable variable in our
model, we have to infer it from the observations received over
time, hedging against estimation uncertainty during decision
making.

4) Reward Modeling: The POMDP’s reward model guides
the manipulator towards an optimal behavior which is safe,
collision-free, and reaches the goal efficiently. We considered
the following rewards in our model.

• Goal Reward: If the manipulator reaches within distance
Dg to the goal, then there is a large positive reward Rgoal.
This reward is modeled to encourage the manipulator to
reach its goal.

• Obstacle Collision Penalty: If the manipulator reaches
within a distance Dobs to the static obstacle, then there
is a substantial negative reward of Robs. This reward is
modeled to prevent the manipulator from colliding with
static obstacles.

• Human Collision Penalty: If the manipulator is moving
and passes within a distance Dhum to a human in the
environment, then there is a substantial negative reward
of Rhum. If the manipulator is stationary, then we assume
the human is responsible to avoid it. This reward is
modeled to ensure safety of the human as well as the
manipulator.

• Sudden Stop Penalty: If the manipulator chooses the SB
action, then there is a negative reward of RSB . This re-
ward is modeled to incentivize the policy against frequent
“sudden brake” action, and exploring paths where that
action can be avoided.

Fig. 2: Block diagram that shows different components of the proposed approach and how they collectively work.

• There is also a small negative reward of Rt for every
planning step. This reward is included to discourage
longer paths.

5) Generative Model G: For many problems, it is difficult
to explicitly represent the probability distributions T and Z.
Some online POMDP solvers, however, only require samples
from the state transitions and observations. As a consequence,
it is beneficial to use a generative model which implicitly
defines T and Z, even when they cannot be explicitly repre-
sented. G stochastically generates a new state, observation, and
reward given the current state and action: s′, o, r = G(s, a). In
our generative model, for a given POMDP state s and action
a, we simulate the manipulator forward by applying a for
time step ∆t and move all the humans towards their sampled
goal location. The ith human is moved towards gi using the
human model and a small random noise ωi is added to it. The
details on human model used for this work are presented in
section V-A. While complex human models exist, the choice
of dynamic object model is regarded as an interchangeable
component of the presented architecture and is not framed as
a contribution of this work.

C. Solving POMDPs Online with DESPOT

We use a state-of-the-art belief tree search algorithm,
DESPOT [3] for finding a policy for our POMDP online.
Its key strength is handling continuous state space and large
observation spaces. To overcome the computational challenge
of exploring a large belief tree, DESPOT samples a set of K
“scenarios”, summarizing the execution of all policies under
these sampled scenarios. DESPOT builds its tree incrementally
by performing a heuristic search guided by a lower bound and
an upper bound on the value at each belief node in the tree.

We calculate the lower bound at a belief leaf node bl by
simulating a roll-out policy for all the scenarios at that belief.
For a long horizon planning problem, it is possible that due
to limited computational time, the tree search might never
find the sparse positive terminal rewards that are typical in go
tasks. As a result, the planner can fail to identify good actions.
To prevent that, the online planner must have access to an
effective roll-out policy for every belief node to obtain a lower
bound on the value estimate. For our proposed formulation, the

roll-out policy executes a path from the manipulator’s current
location to its goal aided by the use of a multi-query planner
(e.g., PRM). We use a reactive controller to execute that
path. If there are no humans within distance Dfar from the
manipulator, then it moves, otherwise it stays stationary. The
roll-out policy is run for a fixed, predefined number of steps
M or until the termination criteria has been met.

We calculate the upper bound at bl by averaging the upper
bound for all the scenarios at bl. For a scenario, if the
manipulator is not stationary and is within distance Dhum

from any human, then the bound is Rhum. Otherwise, it
is γtRgoal where t is the time taken by the manipulator
to reach the goal along the chosen path assuming that the
manipulator can continuously move with no dynamic obstacles
(e.g., humans) around.

DESPOT generates a policy tree from this information, with
the controller selecting the action at the root of the tree with
the greatest expected reward.

D. Probabilistic Roadmaps for Multi-Query Path Planning

The Probabilistic Roadmap (PRM) is a well known method
for path planning in high dimensions for robots in static
environments. The method constructs a graph whose nodes
correspond to collision-free configurations in the space and
whose edges correspond to feasible paths between these con-
figurations [23]. This method of motion planning is generally
used for manipulators in an environment with static obstacles.
For a robotic manipulator interacting in an environment, the
graph nodes correspond to (θ1, θ2, θ3, θ4, θ5, θ6) coordinates
in the joint angle space and the edges correspond to colli-
sion free linear paths between those configurations. In this
work, we assigned the manipulator’s starting configuration
and configuration at all the goal locations for grasping as
nodes in the PRM, and randomly sampled more nodes in
the environment to have a total of NPRM nodes. We added
edges by connecting each node to its k nearest neighbors to
which a collision-free straight line motion is possible. The
euclidean distance between the two nodes represent the weight
of the edge between them. For every node in the PRM,
we find the shortest path from that node to all the possible
goal configurations/nodes in the PRM. This is an offline step

and needs to be done just once for any given environment.
In order to find a path from any node in the PRM to the
goal configuration for the roll-out policy, we just follow the
precomputed path on the PRM from that node to the goal
node.

E. Tracking Belief for POMDP via Human Goal Prediction

The partially observable variables in the POMDP formula-
tion are human intentions (goal locations) that are inferred by
the belief tracker based on the series of observations received.
Since in practice there tends to be a finite number of human
goal locations for a given environment, the belief over all
such intentions for each human forms a discrete probability
distribution. Changes in goal can also be captured by this belief
tracker.

The human is modeled as a single point pt ∈ R3 located
at the end of one of the human’s hands, instead of a set of
joint angles. In practice, this can be measured using a motion
capture system, depth cameras, or April Tags. Given the hand’s
trajectory i.e. a sequence of points, we first infer a probability
distribution over the human’s goal P (gh) for each gh ∈ G,
where G is the set of goal positions. Let pt be the latest point
measured for the human’s hand and p0 be the hand’s initial
point. We model the hand’s trajectory as a sequence ξp0→pt

and compute P (gh|ξp0→pt) for each goal gh ∈ G. Applying
Bayes rule yields the equation:

P (gh|ξp0→pt
) =

P (ξp0→pt
|gh)P (gh)

P (ξp0→p)

We assume all goals and trajectories are equally likely such
that P (gh)

P (ξp0→p)
= η where η ∈ R.

P (gh|ξp0→pt) ∝ P (ξp0→pt |gh)

We then follow Srinivasa and Dragan in their formulation
of Maximum Entropy Inverse Optimal Control (MaxEnt IOC)
[25] which shows that minimizing the worst-case predic-
tive loss results in a model where the probability decreases
exponentially with the path’s cost where P (gh|ξp0→pt

) ∝
e−C(ξp0→pt ,g

h).
We follow Srinivas et. al [24], [26] in defining

C(ξp0→pt , g
h) as the difference between the expected length

of the current trajectory to the goal and a minimum length
path to the goal from the initial point. We use a straight line
heuristic h(pt, g

h) = ∥gh−pt∥ to compute the expected length
traversed from the current position to the goal. The cost of the
full path can be written as:

C(ξp0→pt
, gh) =

t∑
i=1

(∥xi − xi−1∥) + ∥gh − pt∥ − ∥gh − p0∥

Then, at each time step, we compute P (gh|ξp0→pt) =

ηe−C(ξp0→pt ,g
h) for each gh ∈ G. We then normalize these

values by solving for η and pass this as a list of goal-
probability pairs (gh, P (gh|ξp0→pt)) into the POMDP solver.

IV. SIMULATION ENVIRONMENT

In our simulated human-robot collaborative task, the ”hu-
man” and UR5e robot must collect all cans from the table as
efficiently as possible. For simplicity, we are going to assume
that there is only one human in the environment. The simulated
human attempts to collect the cans remaining on the table
in random order in a linear fashion, without regard to the
robot’s actions. The robot is not aware of the human’s intended
goal (i.e. the object they plan to collect) at any given time;
instead, it must observe the human’s motion and maintain a
belief over the human’s intended goal, continually updating its
belief distribution at each time step. The manipulator then tries
to figure out the best action to execute in the environment,
i.e., ”can” to go towards by reasoning over the uncertainty
in human’s intention estimation using a POMDP framework.
The task is considered complete when all objects have been
removed from the table. The controller, including the inverse
kinematic solver for the UR5e, along with the probabilistic
roadmap were implemented in Python using the NetworkX
library.

V. TECHNICAL CHALLENGES

This section describes the major technical challenges we
faced while implementing this work and the smart alternatives
we designed to get a working demo.

A. Human Modeling

In order to design an autonomous system that can work in
the same workspace with a human safely and efficiently, there
is a need to model the human and predict the behavior of the
human in the environment for future time steps. Consequently,
accurate mathematical models are required to model the be-
havior of a seven degree of freedom human arm. A lot of
research efforts have focused on addressing this challenging
problem. Implementing one of them to model a human arm
could be a class project on its own. Given the time constraint
for this project, we use a simplistic model for human and its
behavior. We have implemented two different alternatives for
this work. In the Bullet physics engine, we have modeled the
human arm as a red spherical ball as shown in Fig.3. In the
Webots simulator, we have modeled the human arm as a six
degree of freedom robotic arm as shown in Fig.4.

B. POMDP Solver in Julia

Current state of the art online solvers for solving a POMDP
[3], [10] are implemented in high level high performance
programming language Julia. However, since Julia is still in
the initial stage of gaining popularity, we don’t have good
open source physics engines like Bullet or simulators like
Webots that support Julia. Both Bullet and Webots provide
good support for other programming languages, for instance
Python. As a result, the working environment can be modeled
using Python while the POMDP can be solved using Julia.
This requires smooth integration for exchanging information
between Julia code and Python code. We tried to achieve
this using different approaches. Firstly, we used the Robot

Fig. 3: Experimental setup in the Bullet physics engine. The
red ball is used to model the human arm. There are two goal
locations on the table and both robot arm and the human are
trying to go towards different goals.

Operating System (ROS) to bridge the gap and exchange
information. Although both Julia and Python have ROS sup-
port, only older versions of Julia have ROS support while the
packages for solving POMDP online require newer versions of
Julia. Due to this inconsistency, this approach couldn’t work.
Secondly, there are packages that can call Julia code from
Python (PyJulia) and to call Python code from Julia (PyCall.jl).
However, neither of these packages are well supported and
don’t work well with complicated online solvers. As a result,
we couldn’t use this approach either. Another potential fix is
to set up APIs to request data from Julia code to Python code
and vice versa. However, making these calls can introduce
extra latency and that is something we can’t afford in real
time planning.

VI. RESULTS AND DISCUSSION

Due to difficulties in integration between Julia and POMDP
code, we were unable to execute the end to end autonomous
pipeline that we wished to execute. However, to not get stuck
and develop a system for autonomous robotic manipulation
among dynamic obstacles, we used a PRM based approach
that is similar to the ”predict then act” controller [24].

For the Bullet physics engine, we have assumed that there
are two possible goal locations on the table. The human arm
which is modeled as a ball moves in a straight line path from
a randomly sampled point in the environment to one of the
goals on the table. The entire trajectory of the ball is assumed
to be a static obstacle. The PRM is generated by sampling
points in the (x, y, z) coordinates that don’t collide with the
obstacle. We then use the A* algorithm to find the shortest
path for the manipulator from its current state to the other
goal location on the table. The path is implemented using an
existing Inverse Kinematics library. The demo of one such
trajectory is attached with our submission.

For Webots, the simulation environment has been described
in Section IV. The human arm is modeled as another UR5e
robotic arm. The PRM is generated by sampling points
(θ1, θ2, θ3, θ4, θ5, θ6) in the joint angle space. Since we know
the model for the human arm and its intended goal, we can
generate the arm’s trajectory. We reject a sampled PRM node if
it leads to a collision with the can locations or the table in the
environment or the human arm’s trajectory. We keep sampling
nodes until the PRM has NPRM nodes. We then use Dijkstra’s
algorithm to find the shortest path for the manipulator from
its current state to one of the can locations on the table that
the human arm is not going towards. Since the PRM nodes
are in the joint space, the path can be implemented by just
rotating the manipulator joints. Figure 4 shows a two-robot
table clearing scenario when the right robot uses the PRM-
based approach. In addition, a demo is attached with our
submission.

Our demonstration videos show that the approach of using
a PRM to generate trajectories for a manipulator is effective
in obtaining efficient behavior and avoiding collisions with
dynamic agents in the environment. We expect to see similar
results when we overcome the integration issues to set up the
entire pipeline and merge it with a POMDP planner.

VII. FUTURE WORK

There are multiple possible extensions for our work in the
future. At present, the assumed human model is pretty naive
and not realistic. We wish to explore state of the art methods
for modeling human behaviour and use that for our work and
if possible, even improve it. Also, due to issues in Julia and
Python integration, we couldn’t build an end to end pipeline.
We wish to focus on fixing that either by exploring more
alternatives or by reinventing the wheel and implementing the
state of art online POMDP solver, DESPOT in Python. We
plan to work on this project in the summer to create an end to
end novel system, and test its functionality on a 7-DOF robot
arm in the real world. We aim to run a user study, see the
performance of our proposed system in comparison to prior
state of the art approaches and submit our work and results as
a conference paper in HRI 2023.

ACKNOWLEDGMENT

The students would like to thank Dr. Nikolaus Correll for
his constant guidance and support throughout this course.

REFERENCES

[1] Cassandra, Anthony R. ”A survey of POMDP applications.” Working
notes of AAAI 1998 fall symposium on planning with partially observ-
able Markov decision processes. Vol. 1724. 1998.

[2] T. Bandyopadhyay, K. Won, E. Frazzoli, D. Hsu, W. Lee, and D.
Rus, “Intention-aware motion planning,” in Algorithmic Foundations of
Robotics X—Proc. Int. Workshop on the Algorithmic Foundations of
Robotics (WAFR), 2012.

[3] A. Somani, N. Ye, D. Hsu, and W. Lee, “DESPOT: Online POMDP
planning with regularization,” in Advances in Neural Information Pro-
cessing Systems (NIPS), 2013.

[4] Garg, Neha P., David Hsu, and Wee Sun Lee. ”DESPOT-α: Online
POMDP Planning With Large State And Observation Spaces.” Robotics:
Science and Systems. 2019.

(a) (b) (c)

Fig. 4: The left UR5e robot executes a fixed trajectory while the right UR5e robot implements a PRM-based approach. (a)
The right robot detects a possible collision and (b) takes an alternative path found in the PRM. (c) Both robots grasp the cans
without collision with each other.

[5] C. Urmson et al., “Autonomous driving in urban environments: Boss
and the urban challenge,” J. Field Robotics, vol. 25, no. 8, pp. 425–
466, 2008.

[6] R. He, E. Brunskill, and N. Roy, “Efficient planning under uncertainty
with macro-actions,” J. Artificial Intelligence Research, vol. 40, no. 1,
pp. 523–570, 2011.

[7] S. Ross, J. Pineau, S. Paquet, and B. Chaib-Draa, “Online planning
algorithms for POMDPs,” J. Artificial Intelligence Research, vol. 32,
no. 1, pp. 663–704, 2008

[8] D. Silver and J. Veness, “Monte-Carlo planning in large POMDPs,” in
Advances in Neural Information Processing Systems (NIPS), 2010.

[9] Ross, Stephane, Joelle Pineau, and Brahim Chaib-draa. ”Theoretical
analysis of heuristic search methods for online POMDPs.” Advances
in neural information processing systems. 2008.

[10] Sunberg, Zachary N., and Mykel J. Kochenderfer. ”Online algorithms
for POMDPs with continuous state, action, and observation spaces.”
Twenty-Eighth International Conference on Automated Planning and
Scheduling. 2018.

[11] M. Bennewitz, W. Burgard, G. Cielniak, and S. Thrun, “Learning motion
patterns of people for compliant robot motion,” Int. J. Robotics Research,
vol. 24, no. 1, pp. 31–48, 2005

[12] D. Vasquez, T. Fraichard, and C. Laugier, “Growing hidden Markov
models: An incremental tool for learning and predicting human and
vehicle motion,” Int. J. Robotics Research, vol. 28, no. 11–12, pp.
1486–1506, 2009.

[13] C. Fulgenzi, C. Tay, A. Spalanzani, and C. Laugier, “Probabilistic
navigation in dynamic environment using rapidly-exploring random trees
and gaussian processes,” in Proc. IEEE/RSJ Int. Conf. on Intelligent
Robots Systems, 2008

[14] Kratzer, Philipp, Marc Toussaint, and Jim Mainprice. ”Prediction of
Human Full-Body Movements with Motion Optimization and Recurrent
Neural Networks.” arXiv preprint arXiv:1910.01843 (2019).

[15] Y. Li and S. S. Ge, ”Human–Robot Collaboration Based on Motion
Intention Estimation,” in IEEE/ASME Transactions on Mechatronics,
vol. 19, no. 3, pp. 1007-1014, June 2014.

[16] M. Awais and D. Henrich, ”Human-robot collaboration by intention
recognition using probabilistic state machines,” 19th International Work-
shop on Robotics in Alpe-Adria-Danube Region (RAAD 2010), Bu-
dapest, 2010, pp. 75-80.

[17] Mainprice, Jim, and Dmitry Berenson. ”Human-robot collaborative
manipulation planning using early prediction of human motion.” 2013
IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, 2013.

[18] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal,
“STOMP: Stochastic trajectory optimization for motion planning,” in
ICRA, 2011.

[19] Park, Jae Sung, Chonhyon Park, and Dinesh Manocha. ”Intention-Aware
Motion Planning Using Learning Based Human Motion Prediction.”
Robotics: Science and Systems. 2017.

[20] Park, Chonhyon, Jia Pan, and Dinesh Manocha. ”ITOMP: Incremental
trajectory optimization for real-time replanning in dynamic environ-
ments.” Twenty-Second International Conference on Automated Plan-
ning and Scheduling. 2012.

[21] Unhelkar, Vaibhav V., et al. ”Human-aware robotic assistant for collab-
orative assembly: Integrating human motion prediction with planning in
time.” IEEE Robotics and Automation Letters 3.3 (2018): 2394-2401.

[22] Bai, Haoyu, et al. ”Intention-aware online POMDP planning for au-
tonomous driving in a crowd.” 2015 ieee international conference on
robotics and automation (ICRA). IEEE, 2015.

[23] Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Overmars.
1996. Probabilistic roadmaps for path planning in high-dimensional
configuration spaces. IEEE transactions on Robotics and Automation
12, 4 (1996), 566–580.

[24] S. Javdani, S. Srinivasa, and J. A. D. Bagnell, “Shared Autonomy via
Hindsight Optimization,” Robotics: Science and Systems, 2015

[25] Dragan and S. Srinivasa, “A policy-blending formalism for shared
control,” The International Journal of Robotics Research, vol. 32, no.
7, pp. 790805, 2013.

[26] Pellegrinelli, Stefania, et al. ”Human-robot shared workspace collabora-
tion via hindsight optimization.” 2016 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS). IEEE, 2016.

